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Bell's theorem applies only to a hybrid universe in which hidden variables 
determine only part of the outcomes of experiments. When applied to a fully 
causal hidden variable theory, in which detector settings as well as their interac- 
tion with particles during observation are determined by the variables, Bell's 
analysis must be modified. The result is that a fully causal hidden variable model 
can be produced for which a properly chosen spread of hidden variables gives 
precisely the same prediction as standard quantum theory. 

Bell 's theorem 2 is a notewor thy  miles tone in the con t inu ing  evolut ion 

of our  unde r s t and ing  of  the founda t ions  of q u a n t u m  theory. Bell 's a rgument  
is elegant  in its simplicity of  logic and  mathematics .  It is general ly bel ieved 

that  this result  e l iminates  any  causal h idden  variable theory as a viable 

rep lacement  for the in t r ins ic  and  inevitable probabi l i ty  spread of experi- 
mental  outcomes for most  suba tomic  exper iments  as predicted by the 
s tandard  C o p e n h a g e n  in terpre ta t ion  of q u a n t u m  theory. Bell 's a rgument  

can be summar ized  as follows: A h idden  variable  theory is one that assumes 
the existence of certain variables A, which are at present  " h i d d e n "  from us 

for some reason,  but  complete ly  determine the outcome of each experiment .  
Fur thermore ,  there are assumed to be certain Cauchy- type  evolut ionary  
equat ions  that  de termine the future values of A un ique ly  from their initial  
values at any arbitrary time. The details of  these equat ions  are also h idden  

from us, bu t  exist in principle.  3 A h idden  variable  theory would  then claim 

1Physics Department, Loyola University, New Orleans, Louisiana 70118. 
2The original, and perhaps clearest, statement is in Bell (1964). For a less technical and more 
verbal presentation see Mermin (1985). 

3As an example, consider interacting charges in an electromagnetic field, satisfying classical 
mechanics and Maxwell's equations. Here the variables A are the charge, mass, phase-space 
coordinates of all particles, plus the values of the electromagnetic fields. The coupled Lorentz 
force law and Maxwell equations provide the unique time evolution of the system. For a 
macroscopic system such as a plasma, We must employ a statistical average over A, but only 
because of ignorance of fully determined details. 
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to be able to produce the probabilistic statistical predictions of quantum 
theory by assigning some appropriate statistical spread p(h) to the initial 
values of h. The probabilities of quantum theory then become no more 
mysterious than those used in classical statistical mechanics, and in both 
cases would merely be due to our experimental limitations in the collection 
of initial data. Bell admits that such a theory might be viable for the 
predictions concerning the outcome of experiments obtaining the values of 
one localized observable for a single particle. However, his argument 
apparently demolishes a priori any such theory when applied to an experi- 
ment collecting data from distant, causally separated detection events for 
a pair of particles originally correlated (e.g., being in a singlet spin state), 
provided that the following, crucial assumption is made: 

BA: The choices of detection details of the experiment (e.g., spin 
direction) are made independently of each other, and of the 
production of the particles. 

With this assumption, the argument is straightforward. The statistical spread 
of h described by a density p(h) must be independent of the detector 
choices. If  so, no linear averaging of experimental outcomes can reproduce 
the prediction of quantum theory, which is indeed consistent with 
experiment. 

Bell's assumption has been variously expressed in terms of having the 
detector settings chosen "freely" or "randomly." The key point is that they 
are assumed to be independent of the event correlating the particles, i.e., 
their preparation in a given initial state. The main purpose of this paper is 
to emphasize that Bell's assumption is in fact inconsistent with a fully causal 
hidden variable theory in which, following classical determinism: 

FCA: All aspects of the experiment, including detector settings, are 
determined by initial data at some sufficiently remote time. 

In other words, in a truly classical mechanical hidden variable theory, there 
are no "free" or " random" events, but only events whose determining 
variables are not known in sufficient detail. 

Although, as we will see in more detail below, the physical significance 
of Bell's theorem rests entirely on the use of the assumption BA to the 
exclusion of FCA, little notice has been given to this point in publications. 
Others (Stapp, 1980; Clauser and Shimony, 1978; Bell, 1981; Peres, 1978; 
Finkelstein, 1987), have indeed pointed it out, but generally relegate dis- 
cussion of the matter to a few sentences, generally claiming that FCA is 
too preposterous to be considered. Typical is Bell's (1981) statement that 
it (FCA) would be "more mind boggling than causal chains tlaat go faster 
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than light." Furthermore, widely read popular  discussions of the subject, 
such as Mermin's (1985), generally make no mention at all of the tacit 
assumption of "reasonableness," in addition to subluminal propagation, 
etc., that are imposed on the hidden variables to eliminate FCA in favor 
of BA. 

The main purpose of this paper is to reexamine this issue in more detail 
and hopefully without prejudice as to what structure might b~ more "mind 
boggling" than another. The aim is not so much to advocate any particular 
hidden variable theory, but rather to point out that it is quite simply false 
to claim that fully causal hidden variable theories, modeled after classical 
mechanical causality, are excluded by Bell's theorem and related 
experimentation. 

Let us begin by reviewing the physical and mathematical setting of 
Bell's theorem. The idealized experimental situation refers to a pair of 
spin-l /2 particles prepared in a singlet state in a region R and then observed 
by spin detectors D1 and D2 in regions R1 and R2. Regions R1 and R2 are 
distantly separated so that light signals cannot connect either detection with 
the other. Furthermore, and this is the crucial point, the emission of the 
pair at event E at region R cannot be causally connected to the selection 
of the directions a and b for D1 and D2 at events S~ and $2, respectively. 
This is schematically represented in the space-time diagram of Figure 1. 

Implicit in the discussion of a single outcome of this experiment is the 
assumption that the preparation of the particles at the emission event 
corresponds to a particula r value hE of the hidden variables. Some deter- 
ministic law then uniquely determines their value AD at the later detection 
time. For simplicity, it can be assumed that AD = he,  although this is not 
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Fig. 1 
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relevant to the argument. The statistical results obtained in many perform- 
ances of the experiment are then to be ascribed to some distribution p(Ae) 
corresponding to the preparation of the particles in the singlet state many 
times. The point at issue in this paper is Bell's apparently natural assumption 
that causality requires that p be a function of Ae only, and explicitly 
independent of the choices of a and b for the detector orientations, since 
these choices are made at events $1 and $2 that are causally independent 
of the preparation at E. In other words, while a hidden variable theory 
might assert that there is some spread in initial values for hz in the several 
preparations of the particles, this spread cannot depend on the choice of 
a and b, since in some frame, the preparation and choices are simultaneous. 

However, implicit in this is the additional assumption that the hidden 
variables A do not themselves determine the settings a and b for D~ and 
D2. Actually, in a fully causal hidden variable theory (FCA), the detectors, 
and in particular their orientations a and b, are themselves part of the 
complete experiment and thus subject to the deterministic evolutionary laws 
governing h and hence the full outcome of each experimental repetition. 
Consider then Figure 2 as a completion of Figure 1. The question left 
unanswered by a use of BA to the exclusion of FCA is: Why stop the 
backward causal analysis at the time of SI, E, $2 as in Figure 1, rather than 
going to Figure 2? 

From now on the significance of A will be expanded from variables 
describing hidden properties of the particle pair alone to variables describing 
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Fig. 2 
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the selection of settings a and b for D, and D2 as well. The region O has 
a future light cone encompassing not only the detection events, but also 
the events S~ and $2 corresponding to the selection of a and b for D~ and 
D2. The region O can be the region consisting of the laboratory at the time 
of the preparation of all of the equipment. 

Consider now a restatement of Bell's equation governing the hidden 
variable prediction for the accumulated average of measurements of the 
spins at D 1 and D 2 ,  

P(a, b)=  f dAEp(AE)A(a, Ao)B(b, AD) (1) 

Here A(a, }to) and B(b, )to) represent the determined outcome of the spin 
measurements corresponding to the value of Ao of the hidden variables at 
detection time. These are assumed to be fully determined by the values Ae 
at emission time and the integral over Az weighted by p describes the spread 
of individual results corresponding to the various repetitions of the experi- 
ment. When considered from the viewpoint of Figure 2, however, equation 
(1) must be replaced by one of the form 

P(a, b) = [~ dAo p(Ao)A(a, AD)B(b , )tO) 6(AD C (a, b))] (2) 
[ j dAo p()t0) ~()to ~ (a, b))] 

Here the )t integration is to be understood in terms of distributions and 
6()to c (a, b)) is the delta fuction for )tin having values resulting in the setting 
of a and b for D, and D2. Expressed verbally, equation (2) says that the 
average values of the measurement of D 1 times that of D2 for the subset 
of outcomes corresponding to the settings a and b for D, and D2 is the 
integral of the product of those outcomes that result in a and b, divided by 
the probability that a and b occur. Bell's formula is based on an average 
assocated with an absolute probability, whereas, since it only pertains to 
the subclass of experiments corresponding to the outcome a and b for D, 
and D2, it should be replaced by an average based on conditional probability, 
equation (2). Note that (2) can also be written 

P(a, b) = f d)to/5()to)A(a, )to)B(b, Am) (3) 

where/5 now depends on a and b, 

t~()to) =p()to) 6()toe (a, b ) ) / f  d)to p()to) 6()tDe (a, b)) (4) 

Of course, the deterministic evolution assumption for )t implies that )to is 
a function of )to. 
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To make explicit the involvement of the choice of directions a and b 
as part of the fully determined experimental outcome governed by A and 
their evolutionary equations, replace it by (it', M, ~ ) ,  where sr and ~ are 
unit vectors describing the parts of the hidden variables determining the 
settings of D1 and D2. Thus, (3) becomes 

f dit 'od2M 2 - , P(a, b) = d ~ p(ito, ~', N)A(a, AD)B(b, itD) (5) 

All that now remains to be done is to show that the quantum mechanical 
result, 

P(a,b) = - a .  b (6) 

can be reproduced by appropriately chosen t5 in (5). For the example 
considered, let I q~) be the one-particle quantum eigenstates of a spin 
detector in the direction c. If z is any arbitrary but fixed direction and 
a,/3 = • are the spin eigenvalues (normalized to fi = 2), then set 

5( i t ' , s r  * z ~ = c,jc~,(r 1 6 = ) ( r  16~) 

�9 (4~1 [ 6~) (6~  I ~b~) 6 ( M - a )  6 (~  -b )  (7) 

where 
(no sum) 

c++ = c__ = O, c+_ = -c_+ = 1/-,/2 (8) 

and we are explicitly replacing A' by (i,j, k, l, o~, fi), all = • Furthermore, 

s 

j dA'-> E A(a ,A) :oz ;  B (b ,A) : / 3  (9) 
i,j,k,l,a,~ 

Here it is assumed that AD = AE = Ao for simplicity. It is then straightforward 
algebra to show that 

f dit fi(it) = 1; fi(A)->0 (10) 

and that (5) gives exactly the quantum prediction (6). This may be easily 
seen by going back to the original p setting 

p(A', s~, ~ ) =  1(,/,1(16~)| ) = (11) 

where 

Iq4=Z c,+16~)| (12) 
ij 
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and 

f d2sd = (47r )  2 (13) d 2 ~  

Let us now consider the physical implications of  this formalism in 
more detail. The part of  the argument that seems to cause most conceptual 
problems involves the apparent  lack of independence of the detector settings 
from each other and from the particle emission. Thus, in (7) the density 
for the hidden variables indeed depends not only on the state of  the particle 
pair through co, but also on the detector settings a and b. It should be 
recalled that the entry of  the detector setting values into A was through the 
fact that we are computing a conditional rather than absolute average. We 
thus use conditional probability, selecting only those outcomes, i.e., deter- 
ministic hidden variable values, that give rise to detector settings a and b, 
respectively. Nevertheless, there seems to be a very deep prejudice that 
while what goes on in the emission and propagat ion of the particle pair 
may be deterministic, the settings for D1 and D2 are not! We can only 
repeat again that true "free"  or " random"  behavior for the choice of  detector 
settings is inconsistent with a fully causal set of  hidden variables. How can 
we have part  of  the universe determined by A and another part not? However, 
given FCA, the choice of  the settings at $1 and $2 cannot be regarded as 
uncorrelated in the sense of being unpredictable from sufficiently earlier 
data in a complete theory. Opponents,  however, may still object that such 
correlation is "unreasonable"  and inconsistent with our experience of "f ree"  
and " independent"  choices. 

Look at these points in more detail. First, a literal use of "f ree"  
necessarily takes us out of  the realm of what is generally regarded as physical 
science and into metaphysics. However, some operational sense can be 
made of "free" and " independent"  in terms of  statistical measures. This 
still would cause no difficulty for FCA. The arguments above are entirely 
consistent with the outcome that ai and bi are " r andom"  functions of  i, the 
experiment number, i = 1, 2 , . . . ,  and that there is no statistical corelation 
between a~ and b~. All that the FCA formalism uses is that, for those i for 
which a~ = a and b~ = b, the distribution is given by (7). 

It is sometimes said that quantum theory saves free will. In the context 
of  this paper, this might be reversed, so that free will saves quantum theory, 
at least in the sense of  eliminating hidden variable alternatives. In other 
words, if there are any truly "free" events in the experiment, then there can 
be no classical determinism and hence no classical hidden variables. Con- 
versely, given FCA, there are no truly "free"  or " r andom"  events, although 
certain sets of variable values may be uncorrelated in any contemporary 
statistical sense. Thus, an FCA type of hidden variable theory can reproduce 
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exactly the predictions of quantum theory, yet still preserve the apparent 
randomness of certain choices. 
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